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Using deep learning to monitor the decline of insects

Tijs van Lieshout

Abstract

Insects are vital to many ecosystems as pollinators and as a food source for insec-
tivores. Recent studies have indicated a worldwide decline in biodiversity, biomass
and occurrence of many different insect species. Traditional methods to measure
these insect trends are very time consuming, labour intensive and are lethal to the
insects. We propose a novel method of measuring these trends with insect cameras.
In the summer of 2019 in total eighty-seven insect cameras have taken over thirteen
million pictures, of which eight million pictures were labelled to contain activity.
The analysis of all these pictures would take entomologists very long.

In this study, we present a pipeline that automates the analysis of insect camera
data. This pipeline detects, tracks (deduplicates), segments, identifies and estimates
the biomass of terrestrial arthropods with help of different convolutional neural
networks.

Finally, we present a discussion about the possibility of using these cameras as
an insect monitoring network for the Netherlands.
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Chapter 1

Introduction

1.1 The decline of insects and other terrestrial

Arthropods

Insects are a vital part of any ecosystem, firstly by acting as a food source for more
than half of the bird species (Morse 1971). Secondly, the research done by Ollerton,
Winfree, and Tarrant 2011 estimates that between 78% and 94% of all flowering
plants are pollinated by animals, of which mainly insects.

Recent studies have reported on a worrying decline in occurrence, biodiversity
and biomass of insects globally (Hallmann, Zeegers, Klink, Vermeulen, Wielink,
Spijkers, Deijk, et al. 2019; Powney et al. 2019). Specifically for western Europe,
the research done by Hallmann, Sorg, et al. 2017 shows a decline of more than 75%
in flying insect biomass over twenty-seven years in designated nature reserves in
west Germany. By measuring the total insect biomass with Malaise traps in sixty-
three nature protection areas in Germany, they conclude that the decline seems to be
happening in all tested habitat types and that changes in the habitat characteristics,
land use or weather is no simple answer to the decline of flying insects.

A review by Sánchez-Bayo and Wyckhuys 2019 showed seventy-three reports of
insect declines world-wide and claimed that this overview of the literature revealed
”dramatic rates of decline that may lead to the extinction of 40% of the world’s insect
species over the next few decades”. This claim was questioned by the entomologist
community because of their limiting search methods for literature, their data under-
representing insect groups (such as Diptera, Hemiptera en Orthoptera) and over-
representing the regions of North America and Western Europe (Wagner 2019).
Sánchez-Bayo and Wyckhuys 2019 collected publications to review by searching the
Web of Science with the query [insect*] AND [declin*] AND [survey], resulting in
a biased set of studies that focused on declines with none to few results focusing on
increases (Simmons et al. 2019).

Multiple drivers of insect decline are hypothesised such as the loss of habitat,
intensification of agriculture, the increased use of pesticides, climate change, light
pollution and invasive species (Montgomery et al. 2019; Grubisic et al. 2018; Ha-
bel et al. 2019; Homburg et al. 2019). Martin et al. 2018 considers the increase in
road traffic to be an underestimated driver of the decline in flying insect abundance.
There are many different hypotheses, however, more research is certainly needed
on testing possible causes for the decline of insects (Hallmann, Zeegers, Klink, Ver-
meulen, Wielink, Spijkers, and Jongejans 2018; Montgomery et al. 2019).
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1.2 The need for a better monitoring network to

understand insect loss

Most studies of insect trends are based on capture methods such as pitfall, malaise
or sticky traps. Setting up these traps and collecting the insects to measure is very
labour intensive and has to be repeated a large number of times because a study can
take many years before a conclusion can be reached (Hallmann, Sorg, et al. 2017).
Furthermore, Hallmann, Zeegers, Klink, Vermeulen, Wielink, Spijkers, Deijk, et al.
2019 reports on the absence of standardised monitoring networks for the state of
insects in the Netherlands and describes the exceeding need for the development of
such a monitoring network. A more standardised monitoring network could lead to
improved comparisons between data sets and analysis.

1.3 The use of insect cameras for continuous mon-

itoring of insect biodiversity

An insect camera can be defined as a device that makes photographs of insects
autonomously. One of the main advantages of an insect camera is the fact that
it is non-lethal as opposed to other traditional insect collection methods. Malaise
nets and pitfall traps kill insects to collect them which raises an ethical concern
(B. Fischer and Larson 2019). Another large improvement is the fact that an insect
camera is a lot less labour intensive than previous methods. An insect camera also
creates more samples than a Malaise or pitfall trap during the same period since the
camera takes a picture every ten seconds for the time it is deployed.

1.4 Project aim

In the summer of 2019, the DIOPSIS project has placed eighty-seven insect cameras
as a pilot for a novel insect monitoring network. In this study, we aim to build
a pipeline to automate the analysis of over eight million pictures taken by these
insect cameras. This analysis consists of the detection, tracking, segmentation,
identification and biomass estimation of terrestrial arthropods and other organisms
commonly seen as ”critters” (such as a subset of Mollusca) with the use of multiple
different convolutional neural networks. Hereinafter, we will refer to these terrestrial
arthropods and other ”critters” as insects to simplify the readability.

Lastly, we discuss the possibility of using an insect camera network for the long-
term monitoring of insect trends in the Netherlands.

Chapter 1 Tijs van Lieshout 7



Chapter 2

Methods

This project builds upon the work of the insect cameras created by the DIOPSIS
team to further the development of a pipeline to automate the analysis of insect
camera data. For this analysis, the pipeline has been developed and used on images
taken by the insect cameras to detect, track (deduplicate), segment, identify and
estimate the biomass of insects in order to get data about the diversity, occurrence
and total biomass of insects in a given area.

2.1 Data collection with insect cameras

In this study, images taken by insect cameras are seen as the main raw data. These
insect cameras consist of a Raspberry Pi controlled camera with an LED lamp and
a yellow screen on which insects are photographed (figure 2.1). The colour yellow
was chosen to attract the most diverse group of insects as possible (J. W. Campbell
and Hanula 2007). The insect camera has taken pictures with an interval of ten
seconds, with each picture being compared to the preceding picture. If more than
3× 10−5 of the total amount of pixels changed brightness by more than 20% it has
gotten the label of containing ”Activity”. In total eighty-seven insect cameras were
placed in urban, agricultural and nature areas in the Dutch provinces of North- and
South- Holland, Zeeland, Utrecht, North Brabant and Gelderland (figure 2.2).
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Figure 2.1: One of the cameras used to collect the data. The green box on the
left contains the camera, lamp, SD card and the Raspberry Pi. Seen on the right is the
yellow screen of which photos are taken every ten seconds.

Figure 2.2: A map showing the locations of the insect cameras The blue markers
show where one or multiple cameras have been placed.

Chapter 2 Tijs van Lieshout 9
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2.2 NOUS interactive Artificial Intelligence

To be able to reach a conclusion of these eight million pictures the analysis had
to be automated with deep learning. In deep learning, neural networks are used
to automate tasks such as detecting an object or classifying what kind of object
the neural network is given. Neural networks learn by giving manually annotated
examples and improve with the increase in the amount of annotations (Lin et al.
2017). The process of annotation can be very time-consuming and labour intensive.
COSMONiO offers a solution for this in with their product called NOUS. NOUS is
an interactive platform in which the user can train a neural network for different
tasks such as classification, detection or segmentation. To reduce annotation effort
NOUS selects the most difficult images to be annotated by the user first.

In this project, NOUS has been used to annotate detections (a box around
insects) and segments (a polygon hull over only the pixels containing the insects,
without background). The user draws these squares and polygons in NOUS over an
image after which the positions of the corners get saved in a JSON-formatted file.

For the detection of insects RetinaNet by Lin et al. 2017 was used as a starting
point. This state-of-the-art detector has been trained in NOUS on the insect camera
data set.

U-Net was the chosen neural network for the segmentation of insects (Ron-
neberger, P. Fischer, and Brox 2015).

2.3 Nature Identification Application Program-

ming Interface

For the identification of insects the Nature Identification Application Programming
Interface (Nature Identification API) has been used (Naturalis Biodiversity Center
2018). The classifier behind this API is the Inception-v4 network (Szegedy et al.
2017).

Observation.org works with citizen science, resulting in the neural network be-
hind the Nature Identification API having been trained with over three million six
hundred thousand pictures, of which one and a half million pictures of insects and
other terrestrial arthropods, all identified by experts.

2.4 Retrained order identification model

Here we refer to the result of a trained convolutional neural network classifier as
the identification model. Because of some middling success with the Nature API,
another test was done by retraining the identification model for insects on the tax-
onomic order level (e.g. Coleoptera). This model is not based on observation.org,
having been trained from scratch solely with data from the insect camera images.
This neural network was annotated by a member of the DIOPSIS team with suffi-
cient entomological knowledge to be able to classify insects on the taxonomic rank
’order’.

10 Chapter 2 Tijs van Lieshout



Chapter 3

Results

3.1 Data collected per camera

The number of pictures on each SD card of the insect cameras has been plotted
in figure 3.1. In total over thirteen million pictures have been taken, of which
nearly eight million were deemed to contain activity. If more than 3× 10−5 of the
total amount of pixels changed brightness by more than 20% the picture is deemed
to contain activity, meaning that possibly an insect has moved. The labelling of
activity on images is used to filter out the images with no activity so that there are
less redundant images. An example of a picture taken by one of the insect cameras
is found in figure 3.2. An image is on average six hundred kilobytes, resulting in
the need for total storage space of almost eight terabytes for all thirteen million
pictures.

Figure 3.1: The number of pictures taken per camera. The camera identifier is
plotted on the x-axis with the number of pictures taken on the y-axis. Data plotted in
blue shows the pictures deemed to contain ’activity’ and in yellow are pictures without
’activity’. Activity is defined here as the picture being significantly different from the last
taken picture, meaning that in theory an insect or other organism has moved compared
to the preceding picture.
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Figure 3.2: An example picture taken by one of the insect cameras.

3.2 Insect taxa to order generator

The Nature Identification Application Programming Interface returns taxa in the
form of a binomial name on species-level (Naturalis Biodiversity Center 2018). To be
able to analyse the data on the taxonomic order-level a list had to be created linking
all species names in the classifier with their respective order. To achieve this a file in
JSON-format containing all species in the Nature Identification API was retrieved.
Species contained in this file could then be queried against the Netherlands Biodiver-
sity Application Programming Interface (NBA) to get more taxonomic information
(Snijders et al. 2014). The order of 15773 of the 16148 species in the Nature Identi-
fication API could be retrieved in this way. Species and their respective order were
then saved to a list if either their phylum was Arthropoda, Gastropoda or Clitellata.
Because not all Gastropoda or Clitellata are terrestrial or expected to be encoun-
tered in an insect camera some classes were not allowed. These classes consisted
of Branchiopoda, Remipedia, Cephalocarida, Maxillopoda, Ostracoda, Malacostraca
and Pycnogonida. These steps resulted in a list of 7724 species in 59 different taxo-
nomic orders that have a possibility of being encountered in a picture taken by an
insect camera. Contrary to other python scripts made for the pipeline, this script
only has been run once to create the list that the pipeline uses. The python code to
create this list can be found in appendix A.1.

12 Chapter 3 Tijs van Lieshout
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3.3 Pipeline for the automatic analysis of insect

camera data

3.3.1 Overview of the pipeline

A pipeline has been made to be able to analyse the nearly eight million pictures
taken by the cameras. This pipeline has been written in Python 3.5 (Rossum
1995). The source code of the pipeline can be found in appendix A.2. Fig-
ure 3.3 and 3.4 show the individual python scripts and their input and output
that make up the pipeline. The pipeline starts with the CSV-formatted files that
describe the detections (the positions of rectangles around insects in a taken pic-
ture). These files have been generated with NOUS. The pipeline exists of the fol-
lowing seven main steps; segment.py, identify.py, track.py, post process identify.py,
biomass estimation.py, report.py and an optional video.py (Table 3.1). Between
each step, a CSV-formatted file gets saved with the resulting data. It was chosen to
create a new CSV-formatted file in each step to allow running only a few updated
steps without having to run the entire pipeline again.

python script short description

segment.py
Calls the convolutional neural network through
NOUS to create segments of all detections.

identify.py
Calls the nature identification API to classify
all detections. Adds taxonomic order to the
species identification.

track.py
Deduplicates the detections between two
sequentially taken pictures with the
Hungarian algorithm.

post process identify.py
Assigns the most likely taxonomic order to
each object. An object consists of one or
more detections.

biomass estimation.py
Estimates the biomass of each identified
segment through the use of formulas from literature.

report.py
Generates a HTML report containing plots
and tables of the given data set.

video.py
Generates an MP4-formatted video showing
the detections, identifications and body lengths
of insects drawn upon the original images.

Table 3.1: Overview of the main steps of the pipeline.

Chapter 3 Tijs van Lieshout 13



Figure 3.3: A simplified version of the flowchart visualization of the pipeline.
Boxes highlighted in blue are the main python scripts of the pipeline that the user can
run. Coloured yellow shows the external Application Programming Interfaces that are
required for this pipeline. The full pipeline can be seen in figure 3.4.
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Figure 3.4: Flowchart of the pipeline with all python scripts and their input
and output. Boxes highlighted in blue are the main python scripts of the pipeline that
the user can run. Coloured yellow shows the external Application Programming Interfaces
that are required for this pipeline. Finally, boxes highlighted in red show an optional pre-
processing step to correct the images for uneven illumination.
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3.3.2 Performance of the pipeline

The time to perform the steps of the pipeline was measured to get an idea of how
long it would take to analyse all eight million pictures containing activity (table
3.2). These steps were performed on an Amazon Web Services instance with 64
gigabytes of RAM (further specifications can be found in appendix A.3). Time
to complete can differ between data sets depending on the number of insects per
image.

Step Time to complete Number of pictures
containing activity

Detection ±03:30:00 10000
Segment ±00:50:00 10000
Identify (Nature Identification API) ±03:10:00 10000
Track ±00:25:00 10000
Post processing ±00:12:00 10000
Biomass ±00:05:00 10000
Video ±00:20:00 10000
Report ±00:01:00 10000
Total ±08:30:00 10000

Table 3.2: Time to complete steps of the pipeline. Time to complete is in
HH:MM:SS format. Time to complete is shown per ten thousand pictures containing
activity. Scripts have been run on a g4dn.4xlarge Amazon Web Services instance.

The performance of the detection model has been tested through its F1 score.
The F1 score (also referred to as the F-measure) calculates the harmonic mean of
the precision and recall (formula 3.1, 3.2 and 3.3). As of March 2020, the F1
score of the detection model is 0.741. The precision-recall curve of the detection
model has been plotted in figure 3.5.

F = 2× precision× recall

precision + recall
(3.1)

Precision =
True Positives

True Positives + False Positives
(3.2)

Recall =
True Positives

True Positives + False Negatives
(3.3)
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Figure 3.5: Precision recall curve of the detection model. The orange dot shows
the chosen precision-recall combination of the detection model. This orange dot is posi-
tioned at a precision of 0.795 and a recall of 0.694.

To measure the quality of the segmentation model the Sørensen–Dice coefficient
(DSC) was calculated (formula 3.4).The Sørensen–Dice coefficient represents the
similarity between predicted (pixels in set X) and actual (pixels in set Y ) segments.
As of March 2020, The segmentation model used in this pipeline has reached a
Sørensen–Dice coefficient of 0.765.

DSC =
2|X ∩ Y |
|X|+ |Y |

(3.4)

The identification model annotated on order without the use the Nature Iden-
tification API has been tested (table 3.3 and 3.4). The identification model was
trained with ±9 times as many detections than number of validated detections. The
overall accuracy of the identification model was found to be 0.916 (formula 3.5).

ACC =
True Positives + True Negatives

True Positives + True Negatives + False Positives + False Negatives
(3.5)

Chapter 3 Tijs van Lieshout 17
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Table 3.3: Confusion Matrix for the order identification model (without the
use of the Nature identification API). Multiple organisms are cases in which more
than one other class is found in a detection.
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class n (truth) n (classified) accuracy in % precision recall F1-score
diptera 14 15 98.85 0.87 0.93 0.90
multiple organisms 30 31 97.31 0.87 0.90 0.89
araneae 1 1 100 1.0 1.0 1.0
lepidoptera 146 144 96.92 0.98 0.97 0.97
odonata 0 1 99.62 0.0 0.0 0.0
trichoptera 37 34 98.85 1.0 0.92 0.96
coleoptera 1 1 100 1.0 1.0 1.0
hymenoptera 8 8 99.23 0.88 0.88 0.88
unidentified 15 14 95 0.57 0.53 0.55
opiliones 3 3 100 1 1 1
orthoptera 1 1 100 1 1 1
hemiptera 4 7 97.31 0.29 0.50 0.36

Table 3.4: Derivations of the Confusion Matrix for the order identification
model (without the use of the Nature identification API). n (truth) refers to the
number of actual cases in a class. n (classified) refers to the number of cases classified by
the model to a class.

3.3.3 Correcting uneven illumination through image pro-
cessing

At night the brightness is not constant over the entire picture causing insects at
the edge of the picture to be underlit and more difficult to detect. An algorithm
has been developed to compensate for the uneven illumination caused by the LED
lamp by averaging the brightness over the entire picture (figure 3.6). This LED
lamp is placed just above the camera shining directly upon the yellow screen as
seen in figure 2.1. The illumination correction algorithm consists of the following
two steps: (1) taking the average of the Gaussian blur (a low-pass filter used to
smooth an image) of the lightness channel of all images in CIELAB colour space.
(2) applying the computed average Gaussian blur to all images. A more in-depth
explanation in the form of pseudocode can be found in algorithm 1.

Figure 3.6: The result of applying the illumination correction algorithm to an
example image. The original picture is on the left and the result of the image processing
is seen on the right.
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Algorithm 1: Illumination correction. This pseudocode shows how
to implement the algorithm to correct the uneven illumination in insect
camera images.

Data: A directory containing n original pictures taken by a single insect
camera

Result: A directory with illumination corrected images
begin;
setup input and output directories;
for i = 0→ n do

read current image;
convert image to CIELAB color space;
apply Gaussian blur with a 3 by 3 kernel to the lightness channel of the
CIELAB image;

if first image then
totalGaussian←− Gaussian;

else
totalGaussian←− totalGaussian + Gaussian;

end
i←− i + 1

end

meanGaussian←− Gaussian
i

;
for i = 0→ n do

read current image;
convert image to CIELAB colour space;
substract the meanGaussian from the lightness channel of the CIELAB
image;

linearly interpolate the min and max values → 0 to 255;
convert image back to original BGR colour space;

end

20 Chapter 3 Tijs van Lieshout
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3.3.4 Tracking insects between sequentially taken pictures

Some insects (e.g. moths) will rest on the yellow screen for longer than the ten-
second interval in between taken pictures. These individual insects will then possibly
be detected more than once. To be able to have an accurate count of insects,
deduplication has to be performed on detections. Here we define an object as an
individual insect or another organism that is related to one or more detections.

The tracking algorithm uses an implementation based on the Hungarian algo-
rithm (Munkres 1957). The specific implementation used in the pipeline is called
”Munkres” and was written in python by Clapper 2019. The Hungarian algorithm
solves the assignment problem of a two-dimensional matrix to get the lowest total
cost. In this case, the rows of the distance matrix are represented by detections of
the current image and the columns are represented by the detections of the previous
image. A combination of the distance between relative positions in the picture and
(mis-)identification score is used for the final score in each position of the matrix.
The Position only cut-off methods match two detections if their value in the dis-
tance matrix is under the cut-off. The identification penalty adds the amount to the
value in the distance matrix before matching if the identification is not the same on
the taxonomic order level. the Different parameters have been tested and results
are shown in table 3.5 and 3.6. No method is significantly better in both tests
and at the time of writing, no method has been chosen as the definitive yet.
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tracking method used
number of insects
correctly tracked

number of
insects total

percentage
correctly tracked

Position only cut-off 0.01 131 153 85.62
Position only cut-off 0.1 133 153 86.93
Position only cut-off 0.25 117 153 76.47
Position only cut-off 1 110 153 71.9
Position cut-off 0.1,
identification penalty 1

112 153 73.2

Position cut-off 0.1,
identification penalty 0.1

115 153 75.16

Position cut-off 0.25,
identification penalty 0.1

118 153 77.12

Position cut-off 1,
identification penalty 1

110 153 71.9

Table 3.5: Results of tracking test A, the first test set. In this table, results of
tuning different parameters are shown for the same implementation of a tracking algorithm.

tracking method used
number of insects
correctly tracked

number of
insects total

percentage
correctly tracked

Position only cut-off 0.01 65 73 89.04
Position only cut-off 0.1 67 73 91.78
Position only cut-off 0.25 69 73 94.52
Position only cut-off 1 67 73 91.78
Position cut-off 0.1,
identification penalty 1

57 73 78.08

Position cut-off 0.1,
identification penalty 0.1

57 73 78.08

Position cut-off 0.25,
identification penalty 0.1

69 73 94.52

Position cut-off 1,
identification penalty 1

67 73 91.78

Table 3.6: Results of tracking test B, the second test set. In this table, results of
tuning different parameters are shown for the same implementation of a tracking algorithm.
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3.3.5 Estimating biomass from pictures of insects

Outside of diversity and abundance, insect trends are often measured in biomass
(Hallmann, Sorg, et al. 2017; Hallmann, Zeegers, Klink, Vermeulen, Wielink, Spi-
jkers, Deijk, et al. 2019; Homburg et al. 2019; Seibold et al. 2019; Cardoso and
Leather 2019; Habel et al. 2019; Montgomery et al. 2019). The insect camera did
not have a mass scale or other method to measure this biomass. However, since
the distance from the camera to the screen on which insects landed was constant
between all cameras, the length of insects was available to be calculated. The length
in millimetres of insects could then be used together with an identification on order
level to convert to biomass in milligram with formulas from Sample et al. 1993 and
Sabo, Bastow, and Power 2002 as seen in table 3.7. Getting the length of insects
was done by segmenting the insect, taking the longest axis and then counting the
number of pixels from the head to the end of the body, excluding wings beyond
this point. More precisely said in entomological terms: from the frons to the tip of
the abdomen, excluding any cerci (figure 3.7). The segment can be defined as the
polygon inside of a detection containing only the pixels related to the insect without
pixels that are related to the background.

As a means to get the length in millimetres the number of pixels was then
converted with the help of the resolution and distance of the camera. The length
in millimetres was then also checked with the literature of the identified taxonomic
order to be able to filter out nonsense (Gruner and Richter 1996).

paper taxon a b R2 n
sabo et al. Araneae 0.05 2.74 0.98 23
sabo et al. Brachycera 0.006 3.05 0.85 30
sabo et al. Coleoptera 0.04 2.64 0.95 119
sample et al. Diptera 2.213 -3.184 0.7225 257
sabo et al. Ephemeroptera 0.014 2.49 0.89 45
sample et al. Hemiptera 3.075 -4.784 0.8649 70
sample et al. Hymenoptera 2.696 -4.284 0.7921 274
sample et al. Lepidoptera 3.122 -5.036 0.8649 384
sample et al. Mecoptera 1.919 -2.912 0.6724 21
sabo et al. Nematocera 0.1 1.57 0.9 33
sample et al. Neuroptera 2.57 -4.483 0.9409 70
sabo et al. Odonata 0.14 2.27 0.9 45
sabo et al. Orthoptera 0.03 2.55 0.95 42
sabo et al. Plecoptera 0.26 1.69 0.95 45
sample et al. Trichoptera 3.044 -4.61 0.9216 19
sample et al. Insecta 2.494 -3.628 0.7744 1673
sabo et al. Pooled 0.03 2.63 0.81 541

Table 3.7: Parameters of the biomass estimation formulas. The formula for Sabo,
Bastow, and Power 2002 is defined as W = aLb and Sample et al. 1993 defines their
formula as W = eb(L)a. In both of these formulas, W is the dry mass in milligram and
L is the length in millimetres measured from the frons to the tip of the abdomen. a and
b are both constants for their respective order that have been determined by the work of
Sabo and Sample. The last row shows the taxon ”Pooled”, the parameters of this row are
used if an insect segmentation does not fall under any of the above taxa.
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Figure 3.7: Calculating the body length of insects from the longest axis of
a segment. On the left, an example crop (detection) can be seen. The right shows the
segmented result in blue with corners labelled as numbers in red. The thin grey line around
the segment shows the convex hull with the straight line in the segment representing the
longest axis inside of the convex hull.

Figure 3.8: The distribution of the relationship between length and estimated
biomass of a data set. The colour of the dots range from blue to yellow with blue points
having a less certain identification on order level than yellow points.
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3.3.6 Generating a HTML report of results

Each insect camera can be seen as an individual data set. The data sets generated
by the pipeline can contain tens of thousands of entries. To be able to give a better
overview of the data set of a camera a HyperText Markup Language document is
generated with python. This document acts as a report to summarise the occurrence
and biomass of insects of a given camera and mainly consists of plots and tables.
Examples of what kind of plots are shown in these reports can be seen in figure
3.9, 3.10, 3.11, 3.12 and 3.13. At the top of the document, a summary is given
of the entire data set of a camera. Further down the document, the user can find
plots and tables visualizing the data per day.

Figure 3.9: An example of the number of organisms per day. The x-axis is binned
for each day labelled in ISO 8601 format (YYYYMMDD). The bars in this plot represent
the occurrence of organisms counted. The blue line shows the number of pictures labelled
with ”activity” of each day. This plot is generated and shown for each camera in their
respective HyperText Markup Language report.
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Figure 3.10: An example of the total calculated biomass of a data set. The
x-axis is binned for each day labelled in ISO 8601 format (YYYYMMDD). The bars in
this plot represent the biomass in milligram. The blue line shows the number of pictures
labelled with ”activity” of each day. This plot is generated and shown for each camera in
their respective HyperText Markup Language report.

Figure 3.11: An example of insect occurrence within pictures taken by the
insect camera throughout a day. On the x-axis the hour of the day is plotted in bins
of sixty minutes. This plot is generated and shown for each camera in their respective
HyperText Markup Language report.
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Figure 3.12: Occurrence of orders. This plot is generated and shown for each camera
in their respective HyperText Markup Language report.

Figure 3.13: Biomass of orders. This plot is generated and shown for each camera in
their respective HyperText Markup Language report.
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Chapter 4

Discussion

Measuring if a picture contains activity

To remove redundant pictures and speed-up the pipeline each picture is compared to
the previously taken picture and labelled if it is significantly different. In theory, this
would mean that if insects have not moved positions between the interval of taken
pictures, or there are no insects in the picture, a label of ’no activity’ would be given
to the picture. In practice, multiple different events can falsely cause the picture to
be labelled with activity. Firstly, the impact of weather (such as wind or rain) can
cause the picture to be significantly different from the last because of raindrops and
dirt. Another problem is the vegetation being moved by the wind, causing a plant
to be in a different position compared to the last picture and getting the label of
’contains activity’. Because of these reasons, it is believed that a significant part of
the eight million pictures containing activity are duplicate or near-identical to each
other.

Interpretation of the performance of the pipeline

Based on the precision-recall curve (figure 3.5) it has been found that the main
problem of the detection model is false negatives. In the context of image detection,
this means that the model does not detect all actual insects in the pictures.

The Sørensen–Dice coefficient of the segmentation model is mainly lowered by a
few cases in which the segment prediction completely fails. The main case in which
this happens is detections of Opiliones (colloquially known as harvesters or daddy
longlegs) because of their tiny body and long legs.

The identification model on taxonomic order level based on manual annotations
of insect camera data seems reliable, although more tests have to be done on classes
(taxa) of low sample size.
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Comparing biomass with literature

To be able to calculate the biomass the pipeline first has to calculate the body length
of the insect. The body length can only be calculated with accurate segmentation
of the insect. This is where the trouble of annotating these segments begin. The
formulas from Sabo, Bastow, and Power 2002 and Sample et al. 1993 are based on
the body length from the frons to the tip of the abdomen with cerci (e.g. wings
or antennae) extending behind these points not included in the measurement (fig-
ure 4.1). The annotations of these segments then had to be carefully drawn and
estimated where the abdomen ends for insects that have opaque wings fully cover-
ing their abdomen. This could lead to mistakes in overestimating measured body
length. however, with enough entomological knowledge this could still be estimated
correctly.

Figure 4.1: Simplified morphology of a grasshopper The body length is defined
from the frons to the tip of the abdomen, with cerci such as the antennae or the wings
extending outside of these ranges. Figure adapted from N. A. Campbell et al. 2017.
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A comparison of measurements of terrestrial and aquatic invertebrates with the
estimated biomass generated by the pipeline was made (Figure 4.2). As seen in this
figure the estimated data points seem to closely follow the trend of measurements,
being mainly centred towards the lower values.

Figure 4.2: Comparison of estimated biomass with literature. Points coloured
from yellow to blue represent data estimated with the pipeline. With blue points having
a less certain identification on order level than yellow points. Points in white and black
are measurements of terrestrial and aquatic invertebrates from Sabo, Bastow, and Power
2002 respectively. Figure adapted from Sabo, Bastow, and Power 2002.
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The effects of having a LED lamp at night in the

insect camera

The insect camera has a LED lamp that turns on every day from 22:00 until 04:00.
It can be seen from figure 3.11 that more insects are detected during the time
that the LED lamp is on. Previous research shows that artificial light at night has
a strong impact on insects such as moths, and could also be a possible driver for
insect declines (Owens et al. 2019; Grubisic et al. 2018). As such, one could argue
that the LED lamp of the insect camera could be an ethical concern and be possibly
damaging for an insect population, especially if an insect camera is placed in nature
reserves with no other artificial light at night in the surrounding area.

Training the identification based on insect camera

pictures

An experiment was done to see if the identification of insects was possible to au-
tomate with the Nature Identification API (Naturalis Biodiversity Center 2018).
With this API the same neural network model used by waarneming.nl was utilized
on cropped images of insects. At first, this was expected as a good starting point to
train the identification neural network since the model from Nature Identification
API contains over one million five hundred thousand pictures of insects.

This model is not limited to insects and included over sixteen thousand different
taxa. Considering the insect cameras only expect insects (and a subset of terrestrial
arthropods, Mollusca and Clitella) the inclusion of other species is a disadvantage
causing misidentifications. An example of the wide range of different pictures in the
model causing misidentifications can be seen in figure 4.3.

After noticing this erroneous behaviour the classifier (the neural network that
identifies insects) was manually retrained with only insect camera pictures.
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(a) Picture of a Cyprinus carpio from waarne-
ming.nl taken by Bex, WJ on 2018-05-06.

(b) Picture of a Cyprinus carpio from waarne-
ming.nl taken by van der Knaap, T on 2018-
07-05.

(c) An example cropped image of a detection
taken by the insect camera during the night.

(d) An example cropped image of a detection
taken by the insect camera during the day.

Figure 4.3: Comparison between insects detected in the insect camera data
and pictures of Cyprinus carpio from waarneming.nl. The pictures above of Cypri-
nus carpio are contained in the training data set for the Nature Identification Application
Programming Interface. Notice the very similar yellow shade in the background of both
the pictures of Cyprinus carpio and the crops of insects hypothetically causing the misiden-
tification by the Nature Identification Application Programming Interface.
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The problems behind the illumination correction

algorithm

An algorithm was developed to improve the identification by compensating for the
uneven lighting caused by the lamp on the insect camera. However, testing showed
no significant increase in identification accuracy with the Nature Identification API.

A disadvantage of using the algorithm is the fact that twice the amount of storage
space is needed to save the new images if the user wants to keep the original pictures.

A positive side-effect of the illumination correction is that constant noise on
the image (for example dirt and plants) are ”erased”. These parts get more bright
than the surrounding and could lead to less false positive in the detection step. An
example of this can be seen in the bottom right of figure 3.6. It could, however, be
argued that the detection of dirt as an insect is not critical since a tracking algorithm
of satisfactory quality would always deduplicate this false positive because a speck
of dirt will not move between the interval of pictures taken.

Alternative tracking strategies

The major limitation of the current Hungarian tracking algorithm is the fact that
it compares a picture (N) only with the one picture taken before (N − 1). If an
individual organism is seen in two non-sequential pictures it will never be tracked
or deduplicated with the current method. If an insect is detected in a frame, erro-
neously not detected in the next frame, and detected again in the frame afterwards,
the insect will be counted twice and thus misrepresent the occurrence and total
biomass in a data set (figure 4.4).

It could be interesting to compare more than one frame backwards. This would,
however, be more complex with the Hungarian tracking algorithm as the distance
matrix would have to be a size of n× n× n, adding an extra dimension.

Figure 4.4: The problem of missing detections for the tracking algorithm.
In this figure, Three sequential frames are schematically shown. In frame 1 and 3, the
butterfly is detected, with the detection missing in frame 2. Because our implementation
of a tracking algorithm only compares two sequential frames the butterfly will be counted
twice.

Chapter 4 Tijs van Lieshout 33



Automation of the analysis of insect camera data

Traditional multi-object tracking algorithms work by predicting where an object
will be in a next frame based on its trajectory (Milan et al. 2016). The pictures
in our data set have an interval of 10 seconds, and if insects or other terrestrial
arthropods moved within those 10 seconds the path they took will not be trivial (T.
Zeegers, personal communication, 2019).

The state of the art multi-object tracking algorithms are also depended on a far
higher number of frames per seconds (FPS) than the 0.1 FPS in our data. These
multi-object tracking algorithms are more commonly used in high frame rate videos
of car and pedestrian traffic.

Another possible strategy is to greatly increase the interval between taking pic-
tures. The hypothesis being that with an interval of thirty minutes, most insects
on the first picture will not be encountered in the next picture. However, many
moths (Lepidoptera) can be seen in the data set sitting in the same spot in many
pictures over the span of hours. Furthermore, it could be argued that this sampling
method will miss a lot of insects, although an insect camera photographing every
thirty minutes for a month is still a significantly large sample size.

The constraint of not being able to analyse small

insects

Currently, a subset of the insects is too small to be able to detect, segment and
identify accurately. A rough cut-off of what makes an insect too small has been set
at 3 millimetres in body length, measured from the frons to the tip of the abdomen.
The cropped images of these small insects consist of too few pixels for the neural
networks to give a meaningful result. It could be argued that these small insects are
not as important to detect since they contain very little energy as a food source for
insectivores. Yet these insects still contribute to the biodiversity of an ecosystem,
and not counting these small insects would not be representative of the biodiversity
of an ecosystem.

A solution to fix this problem could be to increase the resolution of the images
by taking pictures with a better camera, this would, however, increase the file size
of all images and could cause storage space issues. The need for more storage space
would then increase the cost of the cameras.

Improvements to the hardware

The insect cameras used in this project were still early prototypes. From these first
tests, it was found that there is still room for improvement.

Interesting possible future work could contain the use of edge processing with a
device such as the Nano Jetson Development Kit from NVIDIA, the Coral by Google
or the Intel Movidius. With these devices (parts of) the analysis pipeline could be
performed on the insect camera itself. This has the advantage of a lot less time
needed for the analysis since the device could calculate in the ten seconds interval
between taking pictures. A possible problem with this could, however, be that the
devices could overheat quicker in the Summer due to increased energy consumption
and that the increased cost of the camera results in a larger loss when stolen or
vandalized.
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The need for more data for biological analysis

Insect trends can only be analysed with data points spanning multiple years. Be-
cause of this, there is currently insufficient data generated by the insect camera to
perform a biological analysis for estimating the decline of insects in the Netherlands.
However, once the pipeline has been used on the data of all eighty-seven cameras a
comparison could be made between urban, agricultural and nature areas. It would
be best to compare data of the same week to minimize the impact of weather. At
the time of writing, twenty of the eighty-seven cameras have been automatically
analysed by the pipeline.
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Chapter 5

Conclusion

Insect cameras have great potential for monitoring trends of the entomofauna in the
Netherlands.

Although the identification is currently done on order level, improving this step
to family or even species level would be significantly more interesting for the analysis
of the biodiversity in the Netherlands. With only thirty different insect orders the
analysis of biodiversity is limited (Ishiwata et al. 2011).

From a software standpoint, the main problems to solve in future work is the
deduplication (tracking) of insects and the runtime of the calculation. The dedupli-
cation is currently diminished by the fact that it can only compare two sequentially
taken pictures at a time. If an insect is missed in the detection step the deduplica-
tion will not be able to assign the detection to the same object in the next picture.
The performance of all steps that involve a neural network can be annotated more
to increase the performance.

From a hardware standpoint, the main focus should be to make the insect camera
more stable and reliable with a better way to save or even compute the data directly
on the device itself. Once these cameras are of satisfactory quality they should be
used for a more long-term experiment in order to get a view into the trends of insect
diversity, biomass and occurrence of the Netherlands.
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Appendix A

Appendix

A.1 NBA taxon to order

The code can be found under: https://github.com/Magiduck/nba getter.

A.2 Source code for the pipeline

Once made public, the code can be found under: https://github.com/naturalis/diopsis.

A.3 AWS instance specifications

• 2nd Generation Intel Xeon Scalable (Cascade Lake) processors

• NVIDIA T4 Tensor Core GPUs

• Up to 100 Gbps of networking throughput

• Up to 1.8 TB of local NVMe storage

• Instance: g4dn.4xlarge

• GPUs: 1

• vCPU: 16

• Mem (GB): 64

• GPU Memory (GB): 16

• Instance Storage (GB): 225

• Network Performance (Gbps): Up to 25
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